If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=12000
We move all terms to the left:
x^2-(12000)=0
a = 1; b = 0; c = -12000;
Δ = b2-4ac
Δ = 02-4·1·(-12000)
Δ = 48000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48000}=\sqrt{1600*30}=\sqrt{1600}*\sqrt{30}=40\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{30}}{2*1}=\frac{0-40\sqrt{30}}{2} =-\frac{40\sqrt{30}}{2} =-20\sqrt{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{30}}{2*1}=\frac{0+40\sqrt{30}}{2} =\frac{40\sqrt{30}}{2} =20\sqrt{30} $
| 20+4x=14+1x | | 178-3x=7x+38 | | 48-u=180 | | x/2=24/30 | | 3z/7+6=1 | | 4-12x+9x^2=5x+6 | | -5=10d+15 | | 8=2d-4 | | 42=1-7m+20 | | 2+4x=10x | | 2+4x10=x | | 9x2+3=147 | | 9x+3=147 | | 30+4x=30x | | Y=-0.054x+44.54 | | 130x+360=4000 | | 7(1+8x)=455 | | 4-3=1x | | F(18)=2x+4 | | 15x9=54x | | x+1+x+3+x+5=96 | | 2(14-x)=12 | | 5x−12+2x+24=180 | | 5(5m=10)-300 | | -35=5+2p-10p | | -7=(z-76)/2 | | 15(5m=10)-300 | | 6x-1/2=4.5 | | 3j+42=90 | | 14x=40=12x=120 | | -6=85-v | | -2q+76=14 |